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ABSTRACT

Evidence that has recently been compiled (Bai and Sturrock 1991) indicates

that the enigmatic 154-day periodicity in solar activity may be viewed as part of a

complex of periodicities that are approximate multiples of 25.8 days, suggesting that

the Sun contains a "clock" with frequency in the range 440 - 463 nHz. The clock may

comprise either an oscillator or a rotator, each of which may be either real or virtual.

We have reconsidered a previous spectrum analysis of the Zurich sunspot-

number sequence by Knight, Schatten and Sturrock (1979) which revealed a sharp,

persistent and significant periodicity with a period of 12.072 days, corresponding to a

frequency of about 958.8 nHz. This periodicity may be regarded as the (second) upper

sideband of the second harmonic (2v R + 2v E) of a fundamental frequency of 447.7

nHz that is dearly within the search band. In this expression, v R is the sidereal

frequency of the hypothetical rotator and v E is the frequency (31.69 nHz) of the Earth

in its orbital motion around the Sun. In analyzing sunspot area data derived from

the Greenwich data set, and on noting that any frequency is defined only to within

the Nyquist frequency, we find clear evidence not only for the upper sideband of the

second harmonic, but also for the second harmonic (2v R) and the lower sideband of

the second harmonic (2v R -2rE). There is no strong peak at the fundamental

frequency in the Greenwich data, but there is in the Zurich sunspot data.



The effect of a linear oscillator is, to lowest order in the amplitude, the same

as the combined effect of two rotators of opposite polarities. A rotator that has

arbitrary orientation with respect to the ecliptic may influence the outer layers of the

Sun and thereby modulate the occurrence of solar activity such as sunspots. By

analyzing a simple model, we find that such a rotator would influence surface

activity in such a way that the spectrum of a "signal" (such as the record of

sunspots), as seen from Earth, would contain components with frequencies that are

certain integral combinations of v R and v E. The amplitudes of the various

components depend sensitively on @, the angle between the axis of the rotator and

the axis of the Earth's orbital motion. This simple model therefore offers a

kinematical (but not a dynamical) interpretation of the sunspot spectrum.

The present analysis, while offering support of our conjecture that the Sun

contains a clock that regulates the 154-day complex of periodicities, cannot

distinguish between an oscillator or a rotator (that might be a traveling wave), nor

between a real rotator or a virtual rotator (that might be an apparent traveling wave

due to the aliasing effect of an oscillator in a rotating system). Further analysis of

sunspot and other data sets will be required to confirm the existence of such a clock

and (if it is real) to determine its physical nature.
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1. INTRODUCTION

Solar activity exhibits many periodicities and quasi-periodicities, most

prominently periodicities near 27 days related to solar rotation, and periodicities

near 11 years and 22 years related to the solar cycle (Schwabe 1844; Hale 1924). In

recent years, evidence has accumulated supporting a periodicity at about 154 days

(Rieger et al. 1984; Ichimoto et al. 1985; Bai and Sturrock 1987; Bai and Cliver 1990),

and another at about 2.2 years (Sakurai 1979; Haubold and Gerth 1990), quite close to

the quasi-biennial oscillation that is known to occur in the Earth's upper

atmosphere (see, for instance, Andrews, Holton and Leovy 1987). At this time, there

is no accepted theory for either of these two enigmatic periodicities.

In this paper we address the 154-day periodicity. This periodicity was

discovered by analyzing the occurrence rate of gamma-ray flares detected by the

gamma-ray spectrometer aboard the Solar Maximum Mission (SMM) for the

interval 1980 - 1983 (Rieger et al. 1984). After this discovery, many researchers

confirmed the existence of this periodicity in solar cycle 21 (1976 - 1986) by analyzing

various indicators of solar activity (see Bai and Cliver 1990 and references therein).

This periodicity was also found in some activity indicators of solar cycles 19 and 20

(see references in Bai and Cliver 1990). It is also significant that the power spectrum

of solar diameter measurements made during the interval 1683 - 1718 exhibits a 6-

sigma peak at 155 days (Ribes et al. 1989). This evidence has led to the general - but

not universal - conclusion that the 154-day periodicity represents a fundamental

property of the Sun.

The most obvious interpretation to be considered is the hypothesis that, since

the rotation rate of the solar envelope varies with latitude and radius, different

regions of the Sun with slightly different rotation rates meet every 154 days and

interact to enhance flare activity. We have tested this conjecture by analyzing the
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solar coordinates of the major flares observed by the Hard X-ray Burst Spectrometer

(HXRBS) aboard SMM and found that this evidence does not support this proposal

(Bai and Sturrock 1987).

An alternative idea, advanced by Wolff (1983), is similar to the preceding

proposal except that one considers the interaction of active bands that are due to g-

mode oscillations in the radiative core of the Sun (an example of what we refer to as

"virtual rotators"). According to Wolff (1983), the 75 nHz (155-day) periodicity is due

to the interaction of active bands of l=2 g-mode oscillations and active bands of l--3 g-

mode oscillations. In this picture, flares produced during the peak phases of the 154-

day periodicity are expected to be concentrated in the active bands associated with

each oscillation mode. By noting the rotation rates of these oscillations as they were

given by Wolff (1983), we were able to test his proposal by examining the distribution

of flares in these rotating coordinate systems (Bai and Sturrock 1987). Once again,

we found that the evidence does not support the proposal.

Until recently, we could see no other possible interpretation of the 154-day

periodicity. However, recent investigations have shown that this periodicity may be

viewed as simply one member of a complex of periodicities. In 1987, we found a 51-

day periodicity for cycle 19 (1955 - 1965) by analyzing the occurrence rate of major

flares selected on the basis of the comprehensive flare indices (CFI) (Bai 1987). Since

the CFI compilation of Dodson and Hedeman (1971, 1976, 1981) covers the time

interval 1955 - 1979, we undertook to analyze the occurrence rate of CFI major flares

since 1966. This analysis yielded significant peaks at 84, 104, and 129 days (Bai and

Sturrock 1991). The 84-day peak is the strongest in the spectrum formed from the

interval 1966-76, but the 129-day peak is the strongest in the spectrum formed from

the interval 1966-1979. In the power spectrum of the occurrence rate of flares selected

by peak microwave emission for cycle 20, the strongest peak is found at 78 days

(Bogart and Bai 1985). In the power spectrum of the daily sunspot areas for the
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interval 1971-78, the strongest peak is found at 78 days (Bai and Sturrock 1991). Of the

above-mentioned periods, all but 84 days are close to integral multiples of 25.8 days.

We estimate that the probability that four out of the five peaks (51, 78, 84, 102, and 129

days) fall by chance near integral multiples of 25.8 days is 3x10 -5 (Bai and Sturrock

1991).

For these reasons, we have been led to propose that there is a "clock" inside the

Sun with a fundamental period of about 25.8 days, and that this clock somehow

excites subharmonics in the outer layers of the Sun (Bai and Sturrock 1991). The

"clock" could in principle comprise any periodic process in the solar interior. It

could be due to the rotation of some part of the Sun, that we refer to as a "real

rotator," or it could be due to a rotating-wave disturbance (such as was considered by

Wolff (1983)) that we refer to as a "virtual rotator." It is also possible that the clock is

due to a dipole-type or quadrupole-type oscillation, or something more complicated.

However, to lowest order in the amplitude of the disturbance, we may represent such

an oscillator by a combination of rotating-wave patterns, i.e. by a combination of

virtual rotators. For this reason, it is sufficient for our present purpose to consider

only the problem of detecting the existence of a real or virtual rotator within the Sun.

The fact that the "154 day" periodicity varies in period over the range 150-158 days

yields a search band of 440-463 nHz for this fundamental period.

To search for evidence of this hypothetical clock, we have Fourier-analyzed the

daily Greenwich sunspot areas and daily Zurich sunspot numbers. It is to be

expected that, if the clock has an intrinsic frequency v R, an observer on Earth might

detect not only this frequency and its harmonics, but also "alias" frequencies or

"sidebands" that are shifted by multiples of v E, the frequency of the Earth's orbital

motion around the Sun. The results of the spectrum analysis are discussed in § 2.

The spectrum of the Greenwich area data shows no notable peak in the search band

for the fundamental, but it exhibits a very strong peak at 894.3 nHz (period 12.94 days)
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that may be interpreted as the harmonic of the fundamental frequency.

Furthermore, there are also a very strong peak at 958.8 nHz (period 12.07 days) and a

strong peak at 830.6 nHz (period 13.93 days). These two peaks are separated from the

894.3 nHz peak by about two times the Earth's orbital frequency. It appears,

therefore, that the frequencies 2(VR -VE ), 2VR and 2(VR +rE) are all evident in the

Greenwich data. In reviewing the spectrum of the Zurich data, we found a strong

peak at 447.9 nHz (25.84 days), that may clearly be identified with the fundamental

frequency. The peak at 958.8 nHz is quite conspicuous in the Zurich data, as was

noted some time ago by Knight, Schatten, and Sturrock (1979).]

In §3 3 through 6, we investigate how an obliquely rotating pattern would be

perceived by an Earth-based observer, and we find that it is indeed reasonable that

such a pattern would produce peaks at 2(VR -rE ), 2VR and 2(VR +rE). In § 3, we

introduce a sequence of coordinate systems, each step of which involves only a simple

rotation about a common axis. In § 4, we introduce a "distortion function," that we

assume to be time invariant in an obliquely rotating coordinate system, and

represent it as a sum of spherical harmonics of up to second order. By applying

successive coordinate transformations, we find the coefficients of the spherical

harmonics that describe the distortion with respect to an ecliptic-based inertial

coordinate system. The coefficients of these spherical harmonics vary with

frequencies that are multiples of YR. In § 5, we express the "acceptance function" (or

"visibility function") for the Earth-based observer as a sum of spherical harmonics of

up to second order. In the ecliptic-based inertial coordinate system, the coefficients of

the spherical harmonics that represent the acceptance function change with

frequencies that are multiples of rE, due to the Earth's revolution around the Sun.

In § 6, we show that the signal detected by an Earth-based observer has a number of

components, among them components varying with frequencies of VR, (VR - VE ), (VR

+ VE ), (VR - 2rE ), (VR + 2rE ), 2VR, 2(VR - VE ) and 2(VR + VE ), and interpret the three
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frequencies, 830.6, 894.3, and 958.8 nHz of prominent peaks in the power spectrum of

the Greenwich data as 2(VR -VE ), 2VR and 2(VR +VE ).

Possible implications of these results are discussed further in § 7. The

research presented in this article describes the first stage of an ongoing

investigation. The results of research now in progress, that will hopefully clarify

some of the questions left hanging in this article, will be presented in due course.

2. DATA ANALYSIS

The longest sequence of daily measurements of solar activity is the Zurich

sunspot number tabulation. Knight, Schatten and Sturrock (1979) investigated the

spectrum of Zurich daily sunspot numbers over the interval 1849 January 7 to 1970

November 28, searching for evidence of a rapid rotator with a period of order 12

days that had been suggested by Dicke (1976). They found a strong peak that

appeared to be statistically quite significant; this peak has a period of 12.072 days

corresponding to a frequency of 958.8 nHz, that we here refer to as the "KSS

periodicity." At that time, Knight et al. conjectured that this frequency might be the

"synodic" rotation frequency of the core of the Sun or the second harmonic of that

frequency. We decided to investigate the possibility that the KSS periodicity may be

related to a hypothetical clock that regulates the "154-day" complex of periodicities.

These periodicities vary somewhat in period from one sunspot cycle to

another. The "154-day" periodicity (the strongest and best defined of this complex of

periodicities) varies in period over the range 150-158 days. Since we identify this

with the sixth sub-harmonic, this corresponds to a search band of 440-463 nHz for

the fundamental period. The search band for the second harmonic (2v R) is therefore

880-926 nHz, that of the lower sideband (2v R - 2v E) is 817-863 nHz, and that of the

upper sideband (2v R + 2v E) is 943-989 nHz. If the KSS periodicity is due to an oblique

rotator, it can be identified only with the upper sideband of the second harmonic. If
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we tentatively make this identification, we then infer that the fundamental period

is close to 447.7 nHz.

We have examined the sunspot spectrum developed by Knight et al. (1979),

and we find that there is indeed a peak near 447.7 nHz. We find a stronger peak at

447.9 nHz (indeed, this is the peak with the largest power [before normalization]

within the entire period range P<27 days), and a neighboring peak at 447.3 nHz (see

Fig. 1). When we examine the spectra of the first half and second half of the total

interval, we find peaks at 447.7 nHz and 448.2 nHz, respectively. Even if the Sun

does in fact contain a clock with a well defined frequency that modulates solar

activity, the natural variation of solar activity will modify the spectrum so that the

strength and location of the peak will vary in time (Scherrer 1983). If the Sun

contains a virtual rotator, for instance the excitation of a traveling-wave instability,

the frequency might vary considerably as a function of time. Considering once more

the entire data run, the normalized power of this peak is 5.3. The probability of

finding a peak of this power in the 447- 448.5 nHz interval by chance is

P1 = 6 exp(-5.3) = 0.03, (2.1)

where 6 is the number of independent frequencies. This step in the investigation

therefore offers some evidence in support of the hypothesis that there is an oblique

rotator within the Sun, with a sidereal rotation frequency in the range 447-448.5

nHz, that is related both to the 154-day complex of periodicities and to the KSS

periodicity.

We have also examined another related set of data, namely the record of

sunspot activity compiled by the Greenwich Observatory. We have been provided

with a record of the total sunspot area, derived from the more complete Greenwich

data compilation, over the interval 1879 January 1 to 1982 August 15. We have
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accordingly carried out a spectrum analysis of these data, and the results are shown

in Figure 2. In examining the interval 447-448.5 nHz, we find once more that there

is a peak at 447.9 nHz, with a secondary peak at 447.2 nHz (Fig. 2d). These peaks are

close to those found in the Zurich sunspot number spectrum, but not as striking.

We searched for sidebands of the fundamental period, but these are either weak or

absent.

It is clear that, if our interpretation of the KSS periodicity (and the periodicity

near 448 nHz) is correct, we may find peaks in the spectrum also at the frequencies

2v R- 2v E and 2v R. If we regard the fundamental as located in the range 447-448.5

nHz, we are led to search the bands 830.6 to 833.6 nHz and 894 to 897 nHz. We find a

very strong peak at 894.3 nHz with normalized power 12.4 (Fig 2b). The probability

of finding this peak by chance is given by

P2 - 12 exp(-12.4) = 4.9 x 10 -5 (2.2)

where the factor 12 is the number of independent frequencies in the 894 to 897 nHz

interval. We also find a peak at 830.6 nHz, with normalized power 4.3 (Fig. 2c). The

probability of finding this peak in the 830.6 - 833.6 nHz range by chance is

P3 = 12 exp(4.3) = 0.16, (2.3)

Hence the joint probability of finding these two peaks in the two search intervals is

about 8 x 10 -6.

The above argument depends upon the previous analysis by Knight et al.

(1979). We have decided also to analyze the available data without invoking this

previous analysis. We chose to search the spectrum over the entire band 817 nHz to

989 nHz, encompassing the harmonic and both sideband regions corresponding to

the "154 day" period being located in the range 150 - 158 days; the width of this band



is 172 nHz, corresponding to about 57 bins each of width 3 nHz. Of the four largest

peaks, we find that three form a sequence with step size 21 bins, or 63 nHz, that is

the nearest integral approximation to 2v E. Given a sequence of n bins, the

probability that three bins, selected at random, will form a sequence with two

separations each of q bins is

P4 = (3!).([n-2q]/n).(1/[n- 1]).(1/In-2]). (2.4)

Hence, given four bins (corresponding to the four largest peaks), the chance that

three of the bins will form a sequence with two equal separations of q bins each is

P5 = 4.(3!).([n-2q]/n).(lJ[n- 1]).(1]In-2]). (2.5)

For n = 57 and q = 21, this yields p = 0.002. That is to say, there is a probability of only

0.2 % of finding such a sequence by chance among the four largest peaks. Note that

this estimate involves only the Greenwich data. It takes no account of the fact that

the Zurich spectrum shows a strong peak at exactly the frequency corresponding to

the three frequencies selected in the Greenwich spectrum. Furthermore, this

estimate takes no account of the impressive strength of two of the three peaks: the

peak at 958.8 nHz (the KSS periodicity) has normalized power S = 11, so that the

probability that this peak occurs by chance in a bin of width 3 nHz is 10 exp(-11), i.e. 2

10 -4 . Noting that there are n - 2q, i.e. 15, combinations of three bins separated by

2v E, the chance that peaks of the given strengths would be found by chance is seen to

be 15 x 0.14 x 6 10 -5 x 2 10 -4 , i.e. less than 3 x 10 -8 .

There appears to be non-negligible evidence that the Sun does indeed contain

some form of clock that regulates the 154-day complex of periodicities. In the

following sections, we develop and analyze a very simple model for an oblique rotator

that may be representative of such a dock.
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3. COORDINATE SYSTEMS

We adopt rectangular coordinates (x,y,z) that we denote also in vector

notation as x. It is convenient to introduce the following five coordinate systems

with the common origin at the center of the Sun:

r-system: the x r coordinate system rotates with the rotator, and is aligned in

such a way that the rotation axis of the rotator is parallel to the z

axis.

f-system: the xf coordinate system is fixed in space, and is also aligned so that

the rotation axis of the rotator is parallel to the z axis.

e-system: the x e coordinate system is fixed in space and is aligned in such a

way that the ecliptic lies in the x-y plane.

t-system: the x t coordinate system has its z-axis fixed in the direction of the

axis of the ecliptic, but rotates with the Earth in such a way that the

Earth always lies on the x-axis.

s-system: the x s coordinate system is such that the z-axis always points to the

Earth, and the x-axis is antiparaUel to the axis of the ecliptic.

We now examine the relationship between the above systems of coordinates.

The "ecliptic" (e) coordinate system is such that that Earth's orbit lies in the x-y

plane and rotates in a positive sense with respect to the z-axis. We adjust the x-y

axis so that the axis of rotation of the rotator lies in the Xe - Ze plane and is inclined

at an angle @ to the Ze axis. The ye-axis is identical with the yc-axis. Then the Xc -

system is obtained from the Xe - system by rotating the coordinate frame through an

angle @ with respect to the common y axis.
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The Xr - system is obtained from the xf - system by rotating the coordinate

frame through an angle ZR with respect to the common z-axis, where (allowing for

an arbitrary phase at t = 0)

"OR= C°Rt + _R = 2_ VRt + _cR. (3.I)

The xt - system is obtained from the x e - system by rotating the coordinate

frame through an angle ZE with respect to the common z-axis, where

ZE = °JEt + _CE- 2_ vEt + _cE. (3.2)

We are here approximating the motion of the Earth around the Sun to be

purely circular motion with an angular velocity coE or a rotation frequency v E.

The Xs - system is obtained from the xt - system by rotating the coordinate

frame through an angle _/2 with respect to the common y-axis, so that z s is directed

towards the Earth and the x s- axis is anti-parallel to the z t -axis (i.e., the z e- axis).

4. THE DISTORTION FUNCTION

We denote by F(0, (_, t) the "distortion function" of the rotator. In the case of

real rotator, this distortion function might represent the magnetic field strength or

departure from sphericity at the surface of the rotator; in the case of virtual rotator,

it might represent, for instance, magnetic-field and/or velocity-field fluctuations of a

traveling wave.

We express the distortion function in the form

F(O, O, t) = F(t). Y(O, 0), (4.1)

where Y is the "vector" comprising the sequence of spherical harmonics, as defined

in the appendix, that we truncate at order two:
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Y = (Po, P1,C11,Sll,P2,C21,S21,C22,S22), (4.2)

and the "vector" F(t) is the sequence of coefficients

F = (f0,fl,gll,h11,f2,g21,h21,g22,h22), (4.3)

so that

F(0, _, t) = f0 P0 + fl P1 + gl 1 C11 + hl 1 $11 + f2 P2 + g21 C21 + h21 $21 + g22 C22 +h22 $22"

In the x r frame that rotates with the rotator, the vector F will be constant. We

therefore write

F r = (F0,F1,G11,Hll,F2,G21,H21,G22,H22), (4.5)

where F 0, etc., are independent of t. It will be convenient to write

Gl1= Lcos_ v Hl1= Lsin_

G21 = M cos _cM, H 2 = M sin _cM,

G:= Scostc_ H:= Ssin_c_ (4.6)

On noting that the xf - system is obtained from the Xr - system by rotating the

coordinate frame through an angle CaRt with respect to the common z-axis, we may

use equation (A.13), with • replaced by - CaRt, tO express Ff in terms of F r. In this way

we obtain the following form for Ff:

f0,f = F0,

fl,f = F1,

g11,f = L cos(z R + _L,),

(4.4)
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hll,f = L sin(z R + rL,),

f2,f = F2,

g21,f = M cos(z R + 1¢M),

h21,f= M sin('_ R + _¢M),

g22,f = N cos(2z R + _cN),

h22,f = N sin(2z R + _CN). (4.7)

On noting that the Xe -system is obtained from the xf - system by rotating the

coordinate frame through an angle -@ with respect to the common y-axis, we find

from equation (A.16) of the Appendix that the components of the vector F e are

given by

f0,e = F0,

fl,e = cos @ F 1 - sin @ L COS(Z R + KL,),

gl 1,e = sin @ F 1 + cos @ L ¢OS('C R + 1¢L,),

hll,e = L sin(z R + _CL),

f2,e = i (3 cos 2 O - 1) F 2 - 2_sin 2e M cos(z R + lcM) + a sin 2 e N cos(2z R + 1ON),

g21e = 21 sin 2@ F2 + cos 2@ M cos(z R + r M) - sin 2 @ N cos(2z R + _CN),

h21,e = cos O M sin(z R + r M) - 2 sin @ N sin(2z R + 1ON),

g22,e = 1 sin20 F2 + i sin 20 M cos(z R + IcM) + 1 (1 + cos20 ) S cos(Ez R + 1ON),
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h22,e = 1 sin @ M sin(zR + _cM) + cos O N sin(2z R + _CN)" (4.8)

5. THE ACCEPTANCE FUNCTION

Solar activity comprises features and events that are distributed over the

surface of the Sun. However, we frequently use indices to summarize the total

activity observed at a certain time. For instance, the daily Zurich sunspot number is

indicative of sunspot activity on the visible hemisphere.

In forming such indices, we are processing only data on the visible

hemisphere. Furthermore, observations near the limb are likely to be degraded. In

general, we may regard the "signal" (such as the sunspot number) as being formed

from the activity distribution, that we denote by f(0,_b,t), by the equation

S(t) = _ ff dO sin 0 d_ A(0,_) f(0,_),

JJ (5.1)

where the "acceptance function" A(O,O) indicates the way in which different parts

of the surface of the Sun contribute to the signal.

We may follow § 4 in expressing the acceptance function in terms of spherical

harmonics in the form

A(O,¢,t) = A(t).Y(O,¢), (5.2)

where the vector Y is defined by equation (4.2) and we now write

A = (u 0, u 1, vll, wll, u2, v21, w21, v22, w22). (5.3)

Once again, we retain only spherical harmonics up to the second order. Explicitly,
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A(0,¢,t) = u 0 PO + Ul P1 + vii C11 + wll $11

+ u2 P2 + v21 C21 + w21 921 + v22 C22 + w22 922. (5.4)

In terms of the x s - coordinate system defined in § 3, for which the z-axis

always points towards the Earth, the acceptance function will clearly be cylindrically

symmetrical, so that it is expressible as A(0). In this system, the vector (5.3)

simplifies to

A s = (U0, U 1, 0, 0, U2, 0, 0, 0, 0), (5.5)

where U0, U 1 and U 2 are constants, defined in terms of A(0) as follows:

Uo= 2lI:d0 sin0 A(0),

UI = 2_ I:dO sin O cos O A(O),

U2 = _I:dO sin O (3cos2 0 - 1) A(O). /

.J
(5.6)

For the special case that

we find that

A(O)=I, O<O<Oa, L

A(0)=0, 0>0 a, J

Uo- sin 22_Oa,

U1 = 4_ sin 2 0a, a

I/2 4_ sin 2 0a cos 0s. /

3

(5.7)

(5.8)
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It is interesting to note that

If0 a=n/2, U 0=1/2, U 1=3/4, U 2=0. (5.9)

That is to say, if an index were compiled from perfect observations over the visible

hemisphere, we would be "blind" to spherical harmonics of second order.

We now consider the transformation from the x s - coordinate system to the x t

-coordinate system. The x t - system is formed from the x s - system by a rotation by

the angle - _/2 about the y axis. On using equation (A.16), we find that

= W1 -- /uo,t = Uo, Ul,t O, Vll, t -- U1, 1,t - O,

fu_._=-_ u_, v_,,=o, w_,=o, v_=¼u_, w_=o (5.10)

6. THE SIGNAL

As explained in § 1, we are in this article examining only the interaction

between a hypothetical rotator and an envelope that is assumed to be spherically

symmetric. If F(0,0,t) is now regarded as the disturbance in surface activity due to

the rotator, we may assume that this function is stationary in a frame that rotates

with the rotator. In this way, we are led to examine the properties of a "signal" that

is formed from the distortion function and the acceptance function as follows:

S(t) = II dO sin0 dO A(O,O,t) F(0,0,t).
JJ (6.1)

On expressing F(0,0,t) as in equation (3.4) and A(0,0,t) as in equation (5.4),

we find that S(t) may be expressed as

13 vl I gl I 4- 31 wllhl 1
S = uofo+ _iulfl+

tl
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÷lu2_÷_v21921÷_w21h21÷_v_-zgz_÷_w2_22._ 5 0 (6.2)

We may carry out this evaluation in any coordinate system. It is most

convenient to use the x e - system. In terms of this system the quantities f0, etc., are

given by equation (4.7). It is therefore necessary to transform the acceptance

function into the same frame.

We see from § 3 that the x e- system is obtained from the x t - system by a

rotation by the angle "ZE about the common z-axis, where _E is given by equation

(3.2). Hence, on using equation (A.13), we find that

uo,e= Uo, ul,e= 0, vll, = UI cos vZ, w11e = UI sin _Z, l

_,v_l-o,_-o,v_.-__oo._,_2____n_.U2,e--
(6.3)

On combining equations (4.8), (6.2) and (6.3), and noting equation (3.1) and

(3.2), we obtain the following expression for the signal:

S = Uo Fo - _ (3c0s20-1) U2F2

+ 31 U1F1 sin O cos(c0Et + z'Z) + _" U2F2 sin 2 @ cos(2coZt + 2z'Z)

+ _- U2M sin2@ cos(toRt + k'R + _)

.! UIL (I - cosO) cos((C0R+ ¢_'E)t+ k_R+ _ + k'L)
6

+ 1 UIL (1 + cosO) cos((o_ - CoE)t+ x'a - k-'E+ k'L)

.3 U2M sinO(l -cosO) cos((o)R+2¢0E)t + k'R+ 2_ + ZM)
20

+ _- U2M sinO(1 + cosO) cos((cOR-2coE)t+ k'R-2k"E + ZM)

-_ U2N sin20 cos(2o)Rt + 2ZR + k'N)
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+ _- U2N (1 - cosO) 2 COS((200R + 20_E)t + 2k_R + 2k"E + k'N)

+ _- U2N (1 + cosO) 2 cos((2oya - 2O_E)t + 2_:R - 2k_Z + t_N) • (6.4)

7. DISCUSSION

We now interpret the results of § 2 in the light of the analysis of §§ 3 - 6.

We first note that our proposal of an oblique rotator (or oscillator) with a

frequency of 447.5 nHz (period 25.86 days) offers an explanation of nine periodicities

in solar activity: four periodicities that are shown in Figures 1 and 2, and five

periodicities, multiples of 25.86 days, that comprise the "154-day" complex of

periodicities.

Neither the Zurich nor the Greenwich spectrum shows significant evidence

for any sidebands of the fundamental. On referring to (6.4), we see that this absence

is understandable if both L and M are small. In analyzing the same spectra, we

found good evidence for the harmonic triplet in the Greenwich spectrum, and strong

evidence for one of these three peaks in the Zurich spectrum. This implies that N

differs significantly from zero. The fact that the three peaks of the triplet in the

Greenwich spectrum have comparable magnitudes suggests that @ is not small

(and is not near to _ either). The fact that the triplet is stronger in the Greenwich

spectrum than in the Zurich spectrum suggests that U 2 is larger for the Greenwich

data compilation than for the Zurich data compilation. It will be possible to evaluate

this conjecture when we complete our analysis (now in hand) of the sunspot position

data in the Greenwich compilation.

However, we also need to understand the fact that the Zurich spectrum shows

a strong peak at the fundamental. This cannot be attributed to our present model,
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since we infer from the absence of sidebands of the fundamental that M is small. A

more realistic model would take account of the fact that sunspots are not formed

uniformly over the envelope of the Sun, but only in certain latitude bands known as

the "sunspot zones." We plan to examine this more complex model to see ifit offers

an interpretation of the presence of a strong fundamental and the apparent absence

of sidebands of the fundamental.

It is notable that the periodicity determined by analysis of sunspot data appears

to have a very narrow bandwidth. This is to be expected of a real rotator. However,

as two referees have pointed out in some detail,there are severe theoretical problems

to be faced in considering that, for instance, the radiative zone contains a "core" that

rotates about an axis different from that of the radiative zone itself.Mestel and Weiss

(1987) showed that, even if the magnetic axis is aligned with the rotation axis, there

is unlikely to be any significant departure from isorotation in the Sun's radiative

zone if that zone is permeated by a magnetic field of strength exceeding .03 G, that

they consider to unrealistically low. In principle, differential rotation in the

radiative zone could lead to magnetic decoupling of two or more regions, but this

would in turn lead to high gradients of the angular velocity at the boundary layers,

and these gradients would be expected to lead to shear instabilities (Zahn 1983) that

would act in such a way as to restore isorotation. Moss, Mestel and Tayler (1990) have

shown that, if the magnetic axis is not aligned with the rotation axis, the radiative

region of a star should settle into a state of isorotation on a time scale that is quite

short compared with its lifetime.

On the other hand, ifthe signal is due to a "virtual rotator" associated with a

traveling-wave disturbance, one might be surprised that the frequency of the "clock"

is so sharply defined. However, a traveling-wave disturbance is likely to be long-lived

only ifit is maintained by an active mechanism - for instance, ifit is the result of an

2O



instability. In that case, depending on the nature of the instability, the resulting

frequency could be sharply defined.

We can readily identify three programs of data analysis that should be

undertaken to further evaluate our proposal that the Sun contains a clock that

regulates the 154-day complex of periodicities:-

(i) One should analyze sunspot position data in the Greenwich data set rather

than work only with sunspot area data. This should provide a more stringent test of

our hypothesis. Furthermore, if there really is an oblique rotator (real or virtual),

such an analysis should provide evidence concerning the direction of the axis of that

rotator. This work is in hand.

(ii) Since the 154-day and related periodicities show up very strongly in solar

activity data, one should analyze flare data to search for evidence of an oblique

rotator. This work also is in hand.

(iii) One should re-analyze available helioseismology data to examine the

possibility that some internal region of the Sun may have a rotation axis that is very

different from that of the Sun's surface.

Earlier drafts of this article were circulated in the solar physics community

during 1991. We have learned through private communications that, in response to

this proposal, Philip Goode of the New Jersey Institute of Technology and Mike

Thomson of Cambridge University have kindly undertaken such an analysis and

concluded that it is possible to rule out a real oblique rotator with a radius of 0.7 R O

that is characterized by a single angular velocity vector. We have also learned

through private communications that Douglas Gough of Cambridge University and

Alexander Kosovichev of the Crimean Astrophysical Observatory have undertaken a

similar analysis and concluded that it is not possible to rule out an oblique real

rotator if the rotation rate is allowed to be a free function of radius. However, when

the rotation rate is taken to be the value v R that is determined from our spectrum
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analysis, Gough and Kosovichev also rule out the possibility that the entire radiative

zone is rotating at an oblique angle with respect to the Sun's visible envelope.

We wish to thank Richard Bogart, Douglas Gough, Alexander Kosovichev,

John Leibacher, Eugene Parker, Phillip Scherrer and William Thompson for their

advice on special points that arose in the course of this study, and to express our
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thank two anonymous referees for their valuable comments and suggestions, which
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supported in part by the Air Force grant F49620-92-J-0015, NASA grant NAGWo2265,

ONR grant N00014-85-K-011, and Lockheed Solar-A subcontract NAS8-37334.
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APPENDIX: SPHERICAL HARMONICS

We follow the notatio_ of Whittaker and Watson (1952). Carrying our analysis only

to second order, we note that the Legendre polynomials are given by

Po = 1, "_

P1 =_t,

P2 = 1 (3_t 2 . 1), (A.1)

where we write _t for cos 0.

by

The relevant associated Legendre polynomials are given

P11 = (1 - g2)1/2, /

P21 3it (1 - g2)v2,

P2 2 3 (1- its). (A.2)

Following Chapman and Bartels (1940), we use the following notation for spherical

7t
Cl m = Pl re(cos8) cos m(_,

Sim = Pl re(cos0) sin m#. I

harmonics:

(A.3)

Any function F(O,(_) may be expressed, up to second order, in the form

F(0,O) = F r Yr, (A.4)

where the "vector" Y is the sequence of spherical harmonics,

Y = (P0, P1, C11, $11, P2, C21 , $21 , C22, $22), (A.5)

and F is the relevant set of coefficients that we write in the form
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F = (f0, fl, gl 1, hl 1, f2, g21, h21, g22, h22). (A.6)

It is convenient to e_'press the spherical harmonics in terms of the components of

the unit vector, related to the polar angles (0,0) by

Ix = sin 0 cos 0, "|ffi

ly = sin 0 sin 0,

lz = cos 0. (A.7)

We find that

PO = 1, P1 = lz, C1 i = Ix, Sli = ly, P2 = (1/2X31z2" 1),

C21 = 3 Iz Ix, $21ffi 3 Izly, C22 = 3fix 2 - ly2), $22 = 6 Ixly. (A.8)

We now consider a second set of axes, and write the components of the vector as

(lx,ly,lz), etc. If the spherical harmonics are related by

A

Yr = Mrs Ys, (A.9)

we find that the coefficients are related by

Fr = (M'i)sr F,. (A.10)

If the coordinate system _ is formed from the system x by rotation by the angle

about the z-axis, so that

mo][,,]oso,y
[l,j [ . . 1 lz (A.11)

we find that the spherical-harmonic vectors are related by

24



A ,

P1

C11

$11

A

P2

^ 1
C2

_21

C2 _

". 2

1 t_ .

cos_ sin_

-sinO cos(])

cos • sin •

-sin • cos •

cos 20

-sin20

sin 2(] [

"1

C 11

$11

P2

$21

,$2:

(A.12)

The inverse matrix is found by replacing • by -(1). Hence we find that the two sets of

coefficients of the spherical harmonics are related by



1A

f0

gl

I

i

e_

f2

g21

^ 1
h2

g2 2

m

I

m

cos_ sin¢_

-sin(])cos_

cos(l) sin_

-sin_) cos(1)

cos 20 sin 2(]

-sin2(I) cos2(]

I

fl[
I

gll I

i

hll I

f2

g21

h21

g22

h22

(A.13)

Similarly, we may consider the transformation of forming the new

coordinate system x from the coordinate system x by rotation by an angle @ about

the y-axis. The unit vectors are now related by



{cos+1sin+Illlly
• [t.j sin ® cos 0 1.

(A.14)

Hence, we find that the spherical-harmonic vectors are related by

P0

C11

Sl I

^ 1
C2

cos O sin O

-sin @ cos @

1(_o,_-I) !,m2e 1 ,me
2 2 4

.31Ln 20 cos 20 l_120
2 4

P1

C11

$11

P2

C21

cos O 1 "_21
2

3 sin 2 0 - sin 20 I (1+¢0a20)
2

- _in @ cos O

(A.15)

The inversematrix isfound by replacingO by -0. In this way, we find that the two

setsof coefficientsare relatedby
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m

fl

gl'

A

hi

h2

A '

g2

A

, h2

cosO

-sin@

sin@

cosO

i (3cos2 @-1)
2

.1.sin 20
2

cos20

cosO

3sin 2 @

sin 20

1 (l+eoe_)
2

cosO

fo

fl

hl I

g21

i h21

I h2:

(A.16)
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